1,560 research outputs found

    Diagnostic values of serum levels of pepsinogens and gastrin-17 for screening gastritis and gastric cancer in a high risk area in Northern Iran

    Get PDF
    Background: Gastric cancer (GC) is the second cause of cancer related death in the world. It may develop by progression from its precancerous condition, called gastric atrophy (GA) due to gastritis. The aim of this study was to evaluate the accuracy of serum levels of pepsinogens (Pg) and gastrin-17 (G17) as non-invasive methods to discriminate GA or GC (GA/GC) patients. Materials and Methods: Subjects referred to gastrointestinal clinics of Golestan province of Iran during 2010 and 2011 were invited to participate. Serum levels of PgI, PgII and G17 were measured using a GastroPanel kit. Based on the pathological examination of endoscopic biopsy samples, subjects were classified into four groups: normal, non-atrophic gastritis, GA, and GC. Receiver operating curve (ROC) analysis was used to determine cut-off values. Indices of validity were calculated for serum markers. Results: Study groups were normal individuals (n=74), non-atrophic gastritis (n=90), GA (n=31) and GC patients (n=30). The best cut-off points for PgI, PgI/II ratio, G17 and HP were 80 μg/L, 10, 6 pmol/L, and 20 EIU, respectively. PgI could differentiate GA/GC with high accuracy (AUC=0.83; 95%CI: 0.76-0.89). The accuracy of a combination of PgI and PgI/II ratio for detecting GA/GC was also relatively high (AUC=0.78; 95%CI: 0.70-0.86). Conclusions: Our findings suggested PgI alone as well as a combination of PgI and PgI/II ratio are valid markers to differentiate GA/GC. Therefore, Pgs may be considered in conducting GC screening programs in high-risk areas

    Exploiting higher order smoothness in derivative-free optimization and continuous bandits

    Get PDF
    We study the problem of zero-order optimization of a strongly convex function. The goal is to find the minimizer of the function by a sequential exploration of its values, under measurement noise. We study the impact of higher order smoothness properties of the function on the optimization error and on the cumulative regret. To solve this problem we consider a randomized approximation of the projected gradient descent algorithm. The gradient is estimated by a randomized procedure involving two function evaluations and a smoothing kernel. We derive upper bounds for this algorithm both in the constrained and unconstrained settings and prove minimax lower bounds for any sequential search method. Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters. Based on this algorithm, we also propose an estimator of the minimum value of the function achieving almost sharp oracle behavior. We compare our results with the state-of-the-art, highlighting a number of key improvements

    Distributed Zero-Order Optimization under Adversarial Noise

    Get PDF
    We study the problem of distributed zero-order optimization for a class of strongly convex functions. They are formed by the average of local objectives, associated to different nodes in a prescribed network. We propose a distributed zero-order projected gradient descent algorithm to solve the problem. Exchange of information within the network is permitted only between neighbouring nodes. An important feature of our procedure is that it can query only function values, subject to a general noise model, that does not require zero mean or independent errors. We derive upper bounds for the average cumulative regret and optimization error of the algorithm which highlight the role played by a network connectivity parameter, the number of variables, the noise level, the strong convexity parameter, and smoothness properties of the local objectives. The bounds indicate some key improvements of our method over the state-of-the-art, both in the distributed and standard zero-order optimization settings. We also comment on lower bounds and observe that the dependency over certain function parameters in the bound is nearly optimal

    Breaking a Chaotic Cryptographic Scheme Based on Composition Maps

    Full text link
    Recently, a chaotic cryptographic scheme based on composition maps was proposed. This paper studies the security of the scheme and reports the following findings: 1) the scheme can be broken by a differential attack with 6+logL(MN)6+\lceil\log_L(MN)\rceil chosen-plaintext, where MNMN is the size of plaintext and LL is the number of different elements in plain-text; 2) the scheme is not sensitive to the changes of plaintext; 3) the two composition maps do not work well as a secure and efficient random number source.Comment: 9 pages, 7 figure

    Pulsating flow and convective heat transfer in a cavity with inlet and outlet sections

    Get PDF
    This paper deals with the study of 2-D, laminar, pulsating flow inside a heated rectangular cavity with different aspect ratios. The cooling liquid (water with temperature dependent viscosity and thermal conductivity) comes and leaves the cavity via inlet and outlet ports. The flow topology is characterised by the large recirculation regions that exist at inner corners of the cavity. These low velocity regions cause the heat transfer to be small when compared, for instance, to that of a straight channel. We study the effect that a prescribed pulsation at the inlet port has on the cavity heat transfer. This pulsating boundary condition, of the unsteady Poiseuille type, is described by its frequency and the amplitude of the pressure gradient. The time averaged Reynolds number of the flow, based on the hydraulic diameter of the inlet channel, is 100 and we consider that the dimensionless pulsation frequency (Strouhal number) varies in the range from 0.0 to 0.4. We show that the prescribed pulsation enhances heat transfer in the cavity and that the mechanism that causes this enhancement appears to be the periodic change in the recirculation flow pattern generated by the pulsation. Regarding the quantitative extent of heat transfer recovery, we find that appropriate selection of the pulsation parameters allows for the cavity to behave like a straight channel that is the configuration with the highest Nusselt number

    Magneto-tunable terahertz absorption in single-layer graphene: A general approach

    Full text link
    Terahertz (THz) anisotropic absorption in graphene could be significantly modified upon applying a static magnetic field on its ultra-fast 2D Dirac electrons. In general, by deriving the generalized Fresnel coefficients for monolayer graphene under applied magnetic field, relatively high anisotropic absorption for the incoming linearly polarized light with specific scattering angles could be achieved. We also prove that the light absorption of monolayer graphene corresponds well to its surface optical conductivity in the presence of a static magnetic field. Moreover, the temperature-dependent conductivity of graphene makes it possible to show that a step by step absorption feature would emerge at very low temperatures. We believe that these properties may be considered to be used in novel graphene-based THz application

    New insight into the informal patients' payments on the evidence of literature: A systematic review study

    Get PDF
    Background: Nowadays, a growing literature reveals how patients use informal payments to seek either better treatment or additional services, but little systematic review has been accomplished for synthesizing the main factors. The purpose of this study was to analyze the content of literatures to demonstrate the factors for informal patient payments. Methods: In this systematic review study, PubMed, Web of Science, Wiley Online Library, Science Direct, Ovid, Scopus, and Iranian databases were investigated without time limitation for eligible English and Persian studies. Achieved data were analyzed using content analysis approach and MAXQDA 10 software. Results: Themes related to informal payments in external context of health system were demographic features of health service consumers, patient's personality features and social & cultural backgrounds of the community. Health system challenges' themes were about stewardship weakness, and sustainable financing and social protection weakness. These were followed by human resources' organizational behavior challenges, drugs, medical products, and services delivery provision process challenges and finally change management weakness for reducing and dealing with IPs. Conclusion: It appears that improving the quality of health care services and accurate monitoring of delivery processes, along with performing some strategies for regulating payroll and medical tariffs, strict rules and regulations and improving health staff motivation, would be effective ways against informal payments. Improving the health insurance contribution, promoting transparency & accountability in health system especially in financing, identify precise control mechanism, using empower patient/public related approach, modifying community perception, reinforcing social resistance to unofficial payments and rebuilt lost social capital in health care are some of the other recommendations in this field. To practice these strategies, a comprehensive and systemic vision and approach is needed, however, the key point is that before applying any strategy the impact of this strategy on access, efficiency, equity, and other health systems' goals and policies should be investigated due to the consideration. © 2020 The Author(s)
    corecore